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Abstract—Recent advancements in video transformers have
significantly impacted the field of human action recognition.
Leveraging these models for distracted driver action recogni-
tion could potentially revolutionize road safety measures and
enhance Human-Machine Interaction (HMI) technologies. A
factor that limits their potential use is the need for extensive data
for model training. In this paper, we propose DRVMon-VM, a
novel approach for the recognition of distracted driver actions.
This is based on a large pre-trained video transformer called
VideoMaeV2 (backbone) and a classification head as decoder,
which are fine-tuned using a dual learning rate strategy and a
medium-sized driver actions database complemented by various
data augmentation techniques. Our proposed model exhibits a
substantial improvement, exceeding previous results by 7.34%
on the challenging Drive&Act dataset, thereby setting a new
benchmark in this field.

Index Terms—transformers, driver action recognition

I. INTRODUCTION

Driver distraction, a pervasive issue in the realm of road
safety, is a complex, multifaceted phenomenon that poses
substantial challenges. U.S. data from 2021 reveals that
driver distraction contributed to 8 percent of fatal crashes,
14 percent of injury crashes, and 13 percent of all police-
reported motor vehicle traffic crashes [1]. On the other hand,
it is estimated that 19,800 people died in traffic accidents
in Europe in 2021 [2]. Estimates indicate that between 5-
25% of all crashes in Europe are due to lack of attention
while driving, for example when using a mobile phone,
manipulating the navigator, eating, smoking, or due to fatigue
or stress. Recent data reveals that the percentage of crashes
related to distraction is higher than this estimation [3].

The incorporation of Human Machine Interface (HMI)
technologies is crucial to enhancing the effectiveness of
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Fig. 1: Overview of our DRVMon-VM framework. We lever-
age a series of training and data augmentation techniques
to fine-tune pre-trained models on driver action recognition
videos.

Advanced Driver Assistance Systems (ADAS) in manag-
ing driver distraction and ensuring the safe operation of
autonomous vehicles. By providing timely alerts and min-
imizing cognitive workload, effective HMI technologies can
substantially improve road safety, particularly in situations
where driver distraction is prevalent in manual driving [4].
In autonomous vehicles, the driver must assume control when
the vehicle cannot function independently. Timely detection
of driver state in such takeover moments is crucial for the
safety of control transition [5].

A significant challenge in driver monitoring is to distin-
guish between normal and distracted behavior accurately.
For instance, the system must differentiate between a driver
focusing on the road and a driver merely looking around
the vehicle or checking their phone. This demands the use
of sophisticated algorithms and machine learning techniques
for precise interpretation of sensor and camera data. Aware
of this problem, the European Union has recently published
a regulation that requires all new prototype vehicles to be
equipped with advanced driver distraction warning systems
from mid-2024 onwards. The system should primarily mon-
itor the driver’s eye movements and warn drivers when they
are distracted [6].

Recent advances in deep learning models, specifically
related to vision, have been extensively utilized to address
driver distraction recognition [7]. Commonly used vision
architectures include Convolutional Neural Networks (CNN)
[8], CNN+LSTM [9], or variants of Transformer architectures
[10]. Despite these advancements, there remains room for
improvement, particularly when dealing with complex driver
distraction data sets.



Human action recognition, a field closely related to driver
distraction recognition, benefits from large-scale data sets,
which facilitate the training of sophisticated general-purpose
models [11], [12]. The resulting models can be fine-tuned
for specific tasks using smaller datasets, offering a promising
direction for driver distraction recognition tasks. Many recent
studies in human action recognition employ training and data
augmentation techniques yet to be explored in the driver
distraction recognition domain.

Building upon this recent progress in human action recog-
nition and the potential of the associated modeling and
training techniques, our proposal adapts these novel method-
ologies to driver distraction recognition tasks. We propose
a framework called DRVMon-VM (DRiVer Monitoring -
VideoMae), focusing on techniques for fine-tuning large pre-
trained models, specifically, training and data augmentation
techniques for the task of driver monitoring. Our model
sets a new benchmark in driver distraction recognition using
the Drive&Act [13] dataset for training and evaluation. Our
approach improves state-of-the-art results and we conduct a
comprehensive ablation study to assess the impact of each
technique. An overview of the method is provided in Fig. 1.
Our code is publicly available1

II. RELATED WORK

In the field of driving distraction monitoring, early methods
often involved the use of manually crafted features that were
subsequently input into a conventional machine learning clas-
sifier. Techniques ranged from calculating defining regions
of interest via landmarks to ascertain cellphone usage by the
driver [14], to incorporating facial and hand cues, and their
interaction with different areas, as features for Support Vector
Machine (SVM) classification [15].

Recently the focus has shifted toward the application of
deep learning techniques, such as CNNs, Transformers, and
Graph Neural Networks (GNNs), among others [7]. Many
of these approaches are primarily based on the adaptation
of established neural network architectures to the task of
driver distraction recognition. For instance, [16] utilized a
novel Multiple Scale Faster-RCNN to detect driver distraction
based on the location of hands, cellphones, and steering
wheel. Other works have focused solely on the driver’s gaze
to identify driver distraction. Some research has focused on
body pose and interaction with car elements, employing ei-
ther a GNN [17] or a dual-branch GNN and CNN architecture
for image and posture processing [18].

Driver distraction recognition requires a diverse and rich
set of data to adequately model the possible actions that could
take place in the real world. Recent datasets like Drive&Act
[13], DMD [19], and 100 drivers [20] offer extensive varia-
tion in terms of drivers, actions, and camera views. Among
these, the Drive&Act dataset is predominantly used in the
field. It provides 12 hours of labeled video with different
hierarchical labels of driver distraction. Additionally, it has

1https://github.com/RicardoP0/drvmon-vm

color, NIR, and depth modalities, and five in-cabin views.
The dataset also includes 15 drivers and predefined splits
with different drivers on each split.

Initial experiments on this dataset include the use of pre-
trained CNNs such as I3D [21], and P3D ResNet [22]. A
novel approach to this dataset, proposed by the CTA-Net
model [9], centers on the spatiotemporal fluctuations in driver
motion. The CTA-Net leverages a novel attention mechanism
to extract temporal relationships within video sequences.
Another method leverages powerful vision transformers and
feature augmentation to create TransDARC [10]. The ap-
proach utilizes the Video Swin Transformer [23] to extract
features from a video, which are subsequently processed
by a feature calibration module to enrich the training set
and create higher-quality features. One potential limitation
of vision-based approaches is their high computational cost.
This can be addressed by employing knowledge distillation
and architecture search to construct student networks [8].
This technique involves designing a robust teacher model
that guides an architecture search for a lightweight student
network, which then receives knowledge transfer from the
teacher model. A light alternative to the use of vision models
is the use of body-pose skeletons for classification. The st-
MLP [24], a spatio-temporal multilayer perceptron, leverages
3D body poses over time and blends them across spatial
and temporal dimensions. This approach incorporates an
additional re-weighting step that assigns greater importance
to specific timesteps.

Many previous vision-based architectures come from the
human action recognition field. In this area Vision trans-
formers (ViT) [25] have pushed the state-of-the-art results.
The unique architecture of ViTs has enabled numerous en-
hancements, particularly in terms of scalability and efficiency.
These improvements facilitate the training of larger models
by using large-scale unlabeled datasets and self-supervised
techniques [12], [26]. Furthermore, innovative transformer
variants have been developed to reduce the computational
requirements. These innovations include modifications to the
self-attention mechanism [27], the incorporation of attention
windows [23], or the incorporation of both transformers and
CNNs [28] into a model.

A key distinction between methodologies employed in
driver distraction recognition and those used in human action
recognition lies in the training and data augmentation tech-
niques. The field of human action recognition offers many
techniques that are essential in the training of large models.
In this work, we aim to bring many of these techniques to
the domain of driver distraction recognition and evaluate their
improvement on existing benchmarks.

III. METHOD

A. Video transformer backbone

Consider a video segment with T × C × H × W where
T is the number of frames and C,H,W are the channels,
height, and width of a frame respectively. To process this



Fig. 2: DRVMon-VM backbone. An input video clip is tokenized via a 3D patch embedding layer and a class token (CLS)
is concatenated to the sequence. The generated tokens are subsequently processed by the ViT-base model. The number and
dimensions of the tokens remain constant throughout the network. The output classification token is decoded in a classifier
to obtain the resulting label.

clip with a Vision Transformer (ViT) [25], a specific form
of tokenization is required, known as joint space-time cube
embedding [27]. This technique samples non-overlapping
cubes from the input video clip, which are then fed into the
embedding layer. The method segments a video sequence
into cubes of dimensions t = T/2, h = H/16, w = W/16.
These cubes are then projected to a token of dimension
D using a linear embedding layer, resulting in input with
shape X ∈ IRthw×D. A positional embedding is applied
to each token, and a learnable class token is concatenated.
The entire token sequence is then processed by a standard
ViT model. This ViT model consists of N blocks (N=12 for
ViT-base). Each block is made up of two main components:
a multi-head self-attention mechanism (MSA) and a multi-
layer perceptron (MLP). The MSA captures the dependencies
between the input tokens, while the MLP acts as a non-linear
transformation for the output of the MSA. Each component
is accompanied by a layer normalization operation and a
residual connection. The output of each block is used as
the input to the next, allowing for hierarchical representation
learning. After processing through all N blocks, the final
representation of the class token is utilized to generate the
model’s output.

A major limitation of these models lies in their substantial
data requirement for training. Unlike Convolutional Neural
Networks, which inherently have biases that incorporate local
information, these models do not possess built-in biases. Such
biases or behaviors emerge only after pre-training on large-
scale datasets [29]. As a result, the use of pre-trained models
like VideoMaeV2 [12] becomes indispensable. VideoMaeV2
is a strategy for multi-stage pre-training of ViT-based models.
Initially, the model is pre-trained in a self-supervised manner

on a mixed dataset of 1.35 million unlabeled clips. This is
followed by a second, supervised post-pretraining phase on
a hybrid dataset comprising 710 categories and 0.66 million
labeled clips. This hybrid dataset is built by combining the
pre-existing labeled datasets for human action recognition.
VideoMaeV2 provides weights for various sizes of the ViT
model (base and giant). This method is an improvement from
the original VideoMae [26] by scaling in terms of data and up
to a billion parameters. In this paper, we utilized the weights
of a ViT-base model distilled from the pre-trained ViT-giant
model provided by VideoMaeV2. We chosen VideoMaeV2 as
backbone of our DRVMon-VM framework due to its state-of-
the-art performance on the general problem of human action
recognition, additionally to its promising results on small
datasets for the application in driving monitoring field. An
overview of the model can be seen in Fig.2.

B. Data augmentation

Due to the relatively limited size of datasets in the field
of driver action recognition, the implementation of robust
data augmentation strategies becomes crucial. Three recent
techniques that have gained significant use in action recogni-
tion are Mixup [30], CutMix [31] and RandAug [32]. CutMix
[31] operates by cutting and pasting patches of images among
training instances within a batch, while also proportionally
mixing the corresponding ground truth labels according to the
area of the patches. The size and location of these patches
are randomly obtained from a uniform distribution. Similarly,
Mixup [30] combines two examples and creates a weighted
combination between these, and mixes the ground truth ac-
cordingly. While these methods were initially developed for
images, we extend their application to videos by propagating



(a) Cutmix (b) Mixup
Fig. 3: Example application of CutMix and Mixup. The
resulting label for training would be cellphone = 0.8 and
eating = 0.2. The augmentation is extended to the time
dimension.

the patches through the temporal dimension. An example of
both techniques can be seen in Fig. 3.

RandAug [32] is an automated data augmentation method
that drastically reduces the search space for hyperparame-
ters by controlling the number of augmentations and their
intensity by only two parameters, N and M. N denotes the
number of sequential augmentations applied to a sample,
which can be up to 14, encompassing augmentations such as
contrast adjustment, shearing, and color jittering. The second
parameter, M, is a scalar between 1 and 10 that governs the
magnitude of the distortions.

IV. EXPERIMENTS

A. Dataset

Drive&Act [13] is a multi-modal driver action recognition
dataset containing 12 hours of driving over 15 different
drivers. It provides RGB, infrared, depth, and 3D skeleton
data collected from six different views. The dataset uses a
hierarchical labeling scheme in which we use fine-grained
labels in all our experiments. These labels consist of 34
unique activities that a driver might engage in while operating
an autonomous vehicle, such as eating, using a phone, work-
ing on a laptop, among others. The dataset is divided into
three predefined splits (fold 0, 1, and 2), each with training,
validation, and evaluation sets. There is no driver overlap
between the training, validation, and test sets, which we adopt
to keep fair comparisons to previous works. The results of
the three test sets are averaged. An issue with this dataset is
the high imbalance between the available classes. As such,
there is a need to make a distinction between the metrics re-
ported. We present both the top-1 accuracy (micro accuracy)
and the average-per-class accuracy (macro accuracy). Macro
accuracy takes into account the class imbalance and gives a
better understanding of the model’s overall performance. We
use only the Front-top (inner mirror) view taken from a NIR
camera for a fair comparison with previous methods.

B. Implementation details

For our main experiment, we use the same hyperparameter
configuration while training and testing each split. We utilize
a ViT-base model with pre-trained weights from Video-
MaeV2 [12]. These have been distilled from the pre-trained

ViT-giant model(vit b k710 dl from giant). The classifica-
tion head of the model is replaced by a layer initialized with
random weights. A dual learning rate is employed, consisting
of a primary learning rate for the ViT backbone (lr=8e-
06) and a secondary learning rate for the head (lr=0.0005).
The AdamW [33] optimizer is used along with a Cosine
Annealing learning rate scheduler [34]. The training process
utilizes an early stopping criterion with a patience set to
20 epochs. Data augmentation hyperparameters include the
application of both Cutmix [31] and Mixup [30] techniques
with a label smoothing factor of 0.1. For RandAug [32], we
set N=4 and M=7. During training, 16 frames from the input
clip are sampled and resized to 224 × 224 pixels.

C. Results

We present a comprehensive comparison of our model
against other state-of-the-art methods on the Drive&Act
dataset in Table I. We report both micro and macro accuracy
for a fair comparison. Our model DRVMon-VM outper-
forms the other models in terms of these two metrics (mi-
cro=+12.35%, macro=+7.34%), establishing a new bench-
mark in this dataset. In Fig.5 we can see the accuracy of each
class and Fig.4 provides some qualitative examples. While
our model generally exhibits robust performance, certain
classes are especially difficult for our model. Three failure
cases have been identified. One is the under-representation
of certain classes in terms of samples, which the model fails
to learn (Fig.4a). Another challenge arises from the need
for larger temporal contexts to accurately classify certain
classes, such as ’preparing food’ and ’eating’(Fig.4b). A third
issue is that some classes have a strong resemblance to other
activities, such as the class ’looking around’.

(a) Closing laptop (b) Preparing food

Fig. 4: Challenging cases in the Drive&Act dataset: Our
model struggles to classify instances related to long temporal
contexts.

D. Ablation studies

For the investigation of the impact of the techniques used,
we train and test a ViT-base with the same hyperparameters
on the fold 0 of the Drive&Act dataset. In Table II we can see
the impact of training different parts of the model. ’Linear
probe’ restricts the training only to the classifier head while
freezing the backbone, while ’Full model’ trains both simul-
taneously. We further explore the effect of implementing a
dual learning rate, one for the backbone and another for
the head. Our results suggest that training under the dual
learning rate configuration enhances overall performance.



Fig. 5: Per class accuracy. Results averaged on the test set of the Drive&Act dataset.

TABLE I: Comparison with state-of-the-art on Drive&Act
dataset using the NIR modality. We present micro and macro
accuracy. ’*’ denotes the methods reproduced using their
original code and weight parameters. ’+’ denotes methods
reproduced using MMAction2 [35].

Method Test micro accuracy Test macro accuracy
Pose [13] - 44.36
Interior [13] - 40.30
2-stream [13] - 45.39
3-stream [13] - 46.95
I3D Net [21]+ 71.50 48.87
CTA-NET [9] 65.25 -
st-MLP [24]* - 33.51
3D-studentNet [8] 65.69 -
Transdarc [10]* 66.92 55.30

DRVMon-VM 77.27 62.64
Improvement +10.35% +7.34%

TABLE II: Ablation study of the impact training different
parts of the model. Linear probe, entire model, and the use
of dual learning rate. Results on fold 0 validation set.

Method Val. Micro Accuracy Val. Macro Accuracy
Linear probe 76.15 59.72
Full model 79.65 60.15
Full model + dual lr. 79.16 62.19

The learning rate for the backbone is set several orders of
magnitude smaller than that of the head, limiting the tendency
to deviate from the original model weights.

We investigate the impact on the performance of the dif-
ferent data augmentation techniques and pre-trained weights
in Table III. We can see that the biggest increase in perfor-
mance is gained by the use of pre-trained weights with all
data augmentation included. Moreover, the full set of data
augmentation applied on the randomly initialized network
fails to converge.

TABLE III: Ablation study of the impact of the different
data augmentations applied and the importance of using pre-
trained weights as initialization. Micro accuracy on fold 0
validation set.

Method Pre-trained weights Random init.
No data augmentation 79.16 38.74
RandAug [32] 85.17 52.31
Mixup [30] + CutMix [31] 84.69 54.97
All data augmentation 86.71 19.58

V. CONCLUSION

Our exploration into the application of video transform-
ers for distracted driver recognition has yielded promising
results, reaffirming their potential to enhance road safety
and improve HMI technologies. Through our DRVMon-
VM framework, which leverages a pre-trained VideoMaeV2
model and incorporates various training and data augmenta-
tion techniques, we were able to effectively address the chal-
lenge of extensive data requirements for model training. This
approach led to a significant improvement in performance,
outpacing previous methods by 7.34% on the Drive&Act
dataset. While the backbone used in DRVMon-VM is com-
parable in terms of parameters to the second-best method
Transdarc [10], our proposal requires more computational
power. We plan in the near future to apply techniques, such
as token merge and pruning [36] and knowledge distillation
[37], to mitigate this concern in order to introduce this system
onboard a vehicle. An inherent constraint of ViT models is
the limited temporal context that can be processed effectively
at once. This limitation can reduce the performance on
classes requiring additional context, as highlighted in IV-C.
Future work could employ models such as ActionFormer [38]
to address this issue.
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